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1. Executive Summary 

This report covers the investigation by the Ohio State University CITR (Control and Intelligent 

Transportation Research) Laboratory team with PI: Professor Umit Ozguner, as part of the 

Revolutionary Automatic Target Recognition and Sensor Research (RASER) program.  

 

The project, titled Robust Data Alignment (RDA) was initiated in April 2005 and continued 

through the summer of 2008.  

 

In the third year of the project a task was added to provide an approach using state-of-the-art 

algorithms and software for Georegistration based georeferencing. This was oriented for specific 

data which was provided as a test case.  

 

The technical approach of RDA supports Layered sensing and Multi-modal sensing in a 

Persistent Sensor Network where multiple unmanned aerial vehicles (UAVs) combined with 

stationary sensors are under operation for successful aerial tracking and surveillance missions. 

This final report presents an overview of our information-theoretic cost functional and its 

applications for a collaborative and distributed sensor network. Data registration with multiple 

UAV sensing can be useful for aerial monitoring and tracking systems within a dynamic sensor 

network. 
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2. Introduction 

Multi-UAV sensing combined with stationary sensors has the potential of creating smart 

airborne systems for completing aerial tracking and surveillance missions over a determined 

area. However, understanding what is happening on the determined area is very challenging in 

general.  

 

UAV imageries contain valuable information. The goal of RASER project is to develop a new 

methodology to extract a reference source for high-level tasks such as change detection from a 

registered reference and automatic target recognition. Precision registration is required done for 

sensing persistently. Hence, we start to formulate the problem of data alignment where we focus 

on invariant features of the UAV imageries, model their uncertain-feature spaces, and construct a 

new matching algorithm called robust data alignment (RDA). RDA relies on an information-

theoretic cost criterion, whose optimal solution works for feature-based and correspondence-less 

data registration.  

 

Sometimes, the presence of large motion in a spatial-temporal domain and/or dominant/dynamic 

outliers in feature space makes it very difficult to find an optimal transformation between two 

different images. Hence we demonstrate experimental results on many cases: video registration 

with a single UAV, weighted feature-based registration with multiple mini-UAVs, and 

registration with data refinement for multi-modal data registration. In addition, we address 

challenging issues with persistent sensing and formulate three problems: the problem of layered 

data registration, the problem of multi-modal data fusion, the problem of mosaic construction.  

 

Georeferencing with reliable information could lead to a precise registration; however, due to the 

inaccuracy of intrinsic data including metadata of mobile sensors and geodesic data, we found 

some issues on registration with georeferencing on Columbus Large Image Format (CLIF) 2007 

dataset.  For registration without georeferencing, a two-image Scale-invariant Feature Transform 

(SIFT) example on CLIF2007 has been taken with the issues being encountered when using 

georeferencing and SIFT on CLIF 2006 dataset. 

 

This final report is organized as follows: In Chapter 3, we describe the problem of data 

alignment. To solve the problem, we develop an information-theoretic cost criterion that models 

our feature-based and correspondence-less approach. This work also appears in [1], [2]. In 

Chapter 4, as in [3], we extend our previous work into multiple UAV sensing. Layered sensing 

with scaling factor has been investigated. Our previous cost criterion has been updated with 

more weights on stationary features in a video stream for registering two different video data. In 

Chapter 5, as in [4], we address problems in a persistent sensor network. Study on scale space 

tells that another representation of an original image can lead a more efficient solution for multi-

level data registration. Our preliminary approach to multi-modal data registration contribute for 

all-time sensing when complementary information from different types of sensors need to be 

combined together. In Chapter 6, Georegistration has been applied for CLIF 2007 data. Inertial 

Measurement Unit (IMU) data of cameras attached on UAVs can lead to another version of 

aerial images: georeferenced images. However, due to an inherent error in metadata, 

Georegistration requires image to image registration. Registration with SIFT and Random 

Sample Consensus (RANSAC) algorithms also lead to a possible solution. This approach 

requires of recovering corresponding pairs of features between two different images. In the last 
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Chapter, we conclude our work in data registration. In Appendices, we describe our codes for 

robust data alignment. 

Publications based on this project are: 

 

1. S. Jwa and Ü. Özgüner, "Problems in Data Registration for Persistent Sensing," SPIE 

Defense & Security, March 16-20, Orlando, FL, 2008 

2. S. Jwa, Ü. Özgüner, and Z. Tang, "Information-Theoretic Data registration for UAV-based 

Sensing," IEEE Trans. on Intelligent Transportation Systems, Vol. 9, No. 1, March 2008, pp. 

5-15. 

3. S. Jwa and Ü. Özgüner, "Multi-UAV Sensing Over Urban Areas Via Layered Data Fusion," 

IEEE Statistical Signal Processing Workshop, August 26-29, Madison, WI, 2007, pp. 576-

580. 

4. S. Jwa, Z. Tang, and Ü. Özgüner, "Robust Data Alignment Based on Information Theory 

and Its Applications in Road Following Situation," IEEE International Conference on 

Intelligent Transportation Systems, Toronto, Canada, September 17-20, 2006, pp. 1328-

1333. 
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3. Information-theoretic Data registration 

3.1 Introduction 

Data fusion has been a popular approach to improve the performance of intelligent transportation 

systems for aiding various problems such as congestion control, accident handling, guiding 

emergency crews, collecting a real-time traffic patterns, and providing a reasonable route for 

traffic planners. 

 

Within a distributed sensor network, multiple UAVs can capture complementary and redundant 

information on a road. To refine sensor readings and recover a common reference, data 

alignment is a crucial step. Under various assumptions, scenarios, and objectives, many plausible 

algorithms can be found (see [5], [6] and reference therein) in computer vision area. Typically, 

the alignment is based on establishing point correspondence between the feature sets extracted 

from two images. However, because of the considerable sensor noise and feature extraction 

errors in the sensor data captured from UAVs, the problem of finding a nearly-perfect feature 

correspondence has been often intractable. In addition, the different characteristics of multi-

modal sensors, with the lack of similarity measure between feature points, make it even more 

difficult to find the feature correspondence. 

 

In this work, we aim for a robust data alignment method without the necessity of knowing the 

explicit pair-wise correspondence between two feature sets. In order to achieve this goal, we 

construct an information-theoretic cost criterion using the maximum likelihood principle. 

Moreover, we design a dynamic cost model with an adaptive variance that accounts for explicitly 

an average error bound or implicitly the degree of uncertainties. We demonstrate that the size of 

an error bound decreases as pairs of points are eventually converges to each other. An intelligent 

robot, using a shrinking error-bound or reducing the degree of uncertainty, can recover the best 

pair-wise match of feature points, even if it seems not the exact match to a human. 

 

Based on this new cost criterion, the problem of data alignment here becomes an optimization 

problem; that is, we seek an optimal parameter vector in the sense of minimizing the cost 

functional. To find a global solution of the information-theoretic cost functional, we consider a 

cooperative optimization scheme. In general, there is no single optimization scheme that 

guarantees convergence to a global minimum with a real-time operation; a global search scheme 

as a random search would reach a global minimum with a high computational effort, while fast 

search schemes such as gradient-based or direct search fail to reach a global minimum. This 

motivates cooperative optimization by mixing a global search scheme with a local, but fast, 

search scheme. There are many strategies with which local and global searches can cooperate. In 

[7], we see a case of a globalized Nelder-Mead method that achieves a required globalization by 

probabilistic restart. In this paper, we consider a series of searches consisting of the Nelder-

Mead simplex method and a random search. To help the simplex method avoid a local minimum, 

we take a better initial point selected from the random searches on a convex region with extra 

computational costs. 

 

With the assumption that the true transformation connecting two aerial images can be adequately 

approximated by a certain parametric transformation, we use an affine transformation of six 
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parameters for our experimental UAV data sets. However, without loss of generality, our RDA 

can be applied to any finite parametric transformation in a different scenario. 

 

More interestingly, based on our Monte Carlo test in Section 3.4.3, we suggest a data refinement 

or outlier rejection method. Our comparison of performances, before and after data refinement, 

shows that we can obtain a more accurate affine map from refined data sets, when outliers such 

as moving vehicles on a road are detected and removed. With successful data fusion, we can use 

the registered map for many applications in intelligent transportation systems. 

 

 
Figure 1. Integrated Process: target recognition, tracking, and monitoring tasks can 

utilize the geographic or reference map generated from data registration 

 

For an integrated and iterative process as in Figure 1, the registered map will be useful for 

detecting moving targets that can be tracked by multiple UAVs under a certain strategic 

operation. Each block in this process is involved with rich research areas. Our ultimate goal is to 

use the registered ground for higher level tasks, such as tracking and monitoring, under a 

distributed multi-sensor network system. 

 

The remainder of this chapter is organized as follows. In Section 3.2, we describe a general data 

alignment problem. In Section 3.3, we construct an adaptive cost criterion, develop a search 

strategy of finding optimal parameters in the data alignment problem, and evaluate the cost and 

the search strategy with a numerical stability test. The main theorem says that the cost criterion 

derived from the maximum likelihood principle is closely related to the entropy in information 

theory. More interestingly, the cost criterion is bounded from the above by the average of the 

squared Mahalanobis distance (see more details in [1]). In Section 3.4, we demonstrate the 

experimental results on data sets collected from a UAV experiment, supported by the U.S. 

Department of Transportation. 
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3.2 Problem Formulation 

In this section, we describe the problem of data registration that corresponds to establishing a 

common reference, given a set of data, by finding a suitable transformation between two 

different images. Italicizing our approach, we can generally classify the problem into the 

following: 

 correspondence-based versus correspondence-less, 

 parametric versus nonparametric, 

 intensity-based versus feature-based, and 

 mono-modal versus multi-modal image registration 

 

The common goal is to minimize a cost or to maximize a similarity measure. 

3.2.1 Data Alignment Problem 

Let  and  represent a reference and sensed image, respectively. We assume that the two 

different images  and  contain essentially the common scene as a basic requirement for image 

alignment. Let  and  be two finite subsets, representing the feature points in  and  with 

 and . Our goal is to recover an optimal function  between the two data sets. 

 

Consider the following feature-based registration problem. 

 

Problem: Given a cost function  and two feature data sets  and  find a transformation 

 that minimizes  

 

Following the information theoretic approach in [8] and using information theory in [9], we treat 

a set of feature data in an input or sensed image as the realization of random variables. Then we 

assume the following dynamic equation: 

 

  (1) 

where  and  are a transformation and disturbance, respectively, at a time . 

Our approach can use any parametric transformation for  in Equation (1), but in this paper we 

choose an affine transformation, i.e., 

  

                               (2) 

 

In this work, we assume the smooth motion of airborne mobile sensors like UAVs, flying high 

for the planar views of a scene, which generate a sequence of unknown affine-like 

transformations denoted by  for a sequence of consecutive images denoted by 
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In recovering the transformation matrix,  and the translational vector,  in 

Equation (2), we do not assume any prior knowledge on feature correspondences. Instead, the 

probability distribution functions representing feature data sets are associated statistically. This 

association is the basic idea of the correspondence-less method. Our approach is comparable to 

the existing correspondence-less methodologies in the following subsection. 

 

Another extension of the affine transformation is a projective transformation described by 

 

  (3) 

This sort of extension helps when the affine map cannot be assumed, but the line is still 

preserved. Later in Section 5.3.1, we will show the case of registering Google Earth images and 

UAV images. Compared to the affine case, however, this extension can be highly sensitive with 

a choice of an 8-D initial parameter vector and computationally more expensive. As described 

below, this projective transformation is nonlinear. 

 

 
 

 

3.3 Cost and Search Strategy 

In this section, we construct the following cost from the maximum likelihood principle: 

 

  (4) 

where, as in Section 3.2.1,  and  is a transformed feature point by . 

Both  and  are constant with this initial criterion; we have observed that the 

performance result is sensitive to the constant parameter  requiring different constants for 

different data sets. So, it was almost impossible to fix a universal constant value  for various 

feature sets. One of the fundamental reasons for this difficulty could be explained in terms of 

uncertainties; in a dynamic environment, different feature data would behave as a random 

variable. 

 

In order to overcome this issue and to obtain meaningful results, we seek an adaptive method to 

determine the value of  at the  iteration. That is, we have 
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  (5) 

where  

 

3.3.1 Cost Criteria 

First, we find that our cost model is indeed closely related to an important quantity in 

information theory. Let  and  be the sample sets of 

independent realizations drawn from random variables  and  respectively.  

Let  denote a parametric version of  Then the maximum 

likelihood estimator wants to maximize  Taking the negative logarithm and 

normalization, we have the following: 

  (6) 

  (7) 

Note that the cost  in Equation (6) represents the sample average of  Clearly, 

we see the equivalence in Equation (7) between the MLE and the minimizer of the entropy, since 

 implies that the relative entropy  equals zero. 

Next, using the Parzen-estimator in [10], we obtain 

 

  (8) 

where  denotes a set of realizations of the random variable , and  

represents the so-called Parzen-window; here, we use a Gaussian kernel 

 

 

with a circular symmetric covariance matrix  Note that the Gaussian density function  

in Equation (8) can be replaced by the alternative such as a Cauchy density function. Finally, as 

the main result of this section, we present the following theorem for our information-theoretic 

cost model. 

 

Theorem:  

Let  and  be random variables. Let  and  be 

collections of independent feature points from  and , respectively. Then the maximum 

likelihood estimation for the parameter  of an optimal transformation  from  into  is 

equivalent to minimizing the sum of the relative entropy and the entropy: 
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where  and  corresponds to the Parzen-window. Moreover, when 

 we have the relationship between  and the entropy:    

 

Regarding the duality between the relative entropy and the maximum likelihood principle, in 

1973, Akaike [11] showed that maximizing the expected log likelihood ratio in maximum 

likelihood estimation is equivalent to maximizing the Kullback relative information. We believe 

that our cost criterion supports this duality principle. 

Now, returning to our earlier plan on an adaptive method to deal with the sensitivity of the 

parameter  in (4), we take the following adaptive rule: 

 

Let  be any point in  Then we define a degree of closeness, in terms of a distance measure, 

by 

  

The adaptive parameter  in Equation (5), at the  iteration, is chosen by the average of the 

above distances; that is, 

  (9) 

Since we can consider this parameter as an error-bound on the average, we expect the size of this 

bound to decrease as we recover the transformation between two data sets. In Figure 2, we 

consider two cases: the first illustrates a good case where the error-bound shrinks and matching 

pairs, yellow circle as a transformed feature and red diamond as a true match, are recovered, 

while the second shows the other case where the error-bound does not shrink and the quality of 

alignment is not good. Dotted circles represent error-bounds at a time. Small circles and 

diamonds correspond to feature data in base and input image, respectively. On the base 

coordinate, the numbers represent transformed input feature data. Later, we will illustrate this 

phenomenon with some experimental results in Section 3.4. 

 

 
 

Figure 2. Two Cases of Varying Error-bounds in RDA 
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3.3.2 Search Strategies 

Here, we focus on a mixed search strategy combining a stochastic search and the Nelder-Mead 

simplex method. By choice, we can start with either one in updating the six parameters in our 

linear transformation. The simplex method is one of the most popular direct search methods. 

This method may avoid a local minimum but has no theoretical support for convergence to a 

global minimum, as described in [12].  

 

A stochastic search can be useful when we use a noisy cost instead of the true cost for recovering 

the true transformation. The following theorem, which appears in [13], supports the convergence 

of a stochastic search. 

 

Theorem: 

Suppose that  is the unique minimizer of  in the sense that  and 

 
 

Let  for any  If, for all  there exists a scalar function  

such that  then with noise-free cost measurements we have  

 
 

 

where  is an adjustment, at a time  satisfying: 

 
    

As discussed in Section 3.4, the purpose of a stochastic search is not to find a global minimum 

but to make the simplex method restart with a better initial for a global minimum, when the 

simplex method falls in any inappropriate local minima. Thus, the above theorem also supports 

our mixed search strategy.  

 

The proposed mixed strategy belongs to a class of gradient-free methods, which is selected since 

we cannot guarantee whether the derivative of the cost  is unbiased. Moreover, this method 

makes it possible to use any non-differential cost functional that comes with a Cauchy density 

function instead of a Gaussian density function in the Parzen window method of the previous 

subsection. 

 

Following is the summary of the cooperative or mixed search strategy. The initial and constant 

values below are used in our experiment in Section 3.4, but can be adjusted by choice. 

 

Step 1: Choose an initial parameter vector. In our experiment,  with  

            and  representing the average translational movements in a horizontal and  

            vertical direction, respectively. The initial standard deviation  

Step 2: Use the simplex method to find a minimizer until it satisfies a certain stopping 

            condition: either the number of iteration should be less than 600 or the cost value is  

            less than  
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Step 3: If  then go to Step 4. Otherwise, by using the random search, find a better  

            restarting parameter vector and go to Step 2. The number of searches is limited to  

            20,000. 

Step 4: If  then stop and return  Otherwise, go to Step 2. 

 

3.4 Experimental Results 

In this section, we consider a video sequence to demonstrate the results of our cost criterion and 

the mixed search strategy described in Section 3.3. Our collection of feature points is divided 

into the following two sets: manually selected sets having a small pixel error and automatically 

selected feature sets by the Kanade-Lucas-Tomasi (KLT) corner detector [14]. 

3.4.1 RDA vs. Correspondence-based Method 

Consider two sets of feature points with no outliers and with a relatively small pixel error on the 

average. Note that we assume no knowledge of any feature correspondence initially between any 

pair of points. Experimenting on feature points selected by a human operator from a sequence of 

images as in Figure 3, we compare our correspondence-less method with one of typical 

correspondence-based methods, the least squares (LS) method. We find that the registered image 

by our approach is almost the same as the one by the LS approach, as shown in Figure 3. 

 

In order to evaluate the performance of both methods, we compare the two approaches by testing 

the data sets extracted from the two images. Out of fifty pairs of feature points, forty pairs have 

been used as a training data set to find the invertible transformation and the others as a testing 

data set to evaluate performance measure such as an average error in pixels. This method of 

evaluating the alignment accuracy is known as the test point error method [6]; for alternatives to 

this method, a consistency check with multiple cues and mean square error in control points 

could be considered (see also [6]). Here, in Figure 3, we demonstrate how well the forty pairs of 

points match and provide the final registered output by our approach. The difference in average 

errors evaluated on test data sets is within a sub-pixel distance: 1.9039 and 1.9312 pixels by ours 

and the LS, respectively. This sub-pixel difference also indicates that the assumed linear 

transformation can be feasible for a video sequence from a UAV experiment. Parameter vectors 

lie in a six dimensional real space,  explaining the motions such as rotation, translation, 

scaling, and shearing. As described in Section 3.3.1, the result shows that we can recover not 

only the transformation but also the correspondence. 
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Figure 3. Two data sets are marked as red (+) marks and registered outputs are shown; 

without noise both RDA and LS give almost the identical results 

 

Furthermore, with 5 noisy points (about 10% in each image) uniformly generated in each image, 

we find that our approach is more robust than the correspondence-based one, as shown in Figure 

4 for the data sets in Figure 3. Performance evaluated by the same testing data sets shows that 

our approach outperforms the other: the average error by our approach is 1.9339 pixels, whereas 

the average error by the LS is 11.3368 pixels. The error value of this LS could be improved by a 

complex computation of the transformation as in [15], but generally feature data can be 

matchless (See Figure 8). 

 
Figure 4. Robustness of the New Approach: (a) With noise we compare RDA and LS; (b) 

The registration output by RDA shows the robustness of RDA  

 

3.4.2 Mosaic Image from a Video Sequence 

In this experiment, we want to generate a new ground reference from a video sequence by a 

UAV. The mosaic image in Figure 5  is a new reference combining all the input images in the 
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test image set. The first frame is chosen as a base; others are transformed into the base 

coordinate by composition. RDA combines the test images into one mosaic map.  

 
Figure 5. Experimental Test Data and Registration Output 

 

The experimental result in Figure 6 sums up our approach: the right part illustrates that our 

mixed strategy effectively minimizes the cost, and, at the same time, the final value of the 

approximate variance within a sub-pixel confirms that the corresponding pairs are matched as 

described in Section 3.3, when the last image in the test set is registered to the eighth image in 

the test set as shown in the left part of the figure. The bottom part shows how the last image is 

registered to the first image. This large motion between the first and last image is recovered by 

the composition of eight transformations; that is, 

 
  

where  Here we have 

 

  (10) 

Note that we would have not achieved this result if one of the preceding eight transformations in 

Table 1 were incorrect. Figure shows how the last image is registered to the first image or the 

reference by  in Equation (10). 
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Figure 6. Adaptive Variance and Mixed Strategy 

 

Table 1. List of Recovered Transformations 
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Figure 7. Registration by Composition 

Next, we apply the proposed RDA method to the feature sets obtained from the KLT corner 

detector. This case is more challenging mainly due to the unexpected environmental condition 

and inappropriate feature data realized in the two data sets, even though the two images share a 

large region. As in Figure 8, with different numbers of feature points as  and , 

there exist outliers coming from the moving vehicles on the highway and matchless feature 

points from a non-overlapping region. Nonetheless the experimental result shows that the RDA 

method can successfully recover the transformation in spite of these types of noisy data. Note 

that the registered output clearly shows a good alignment of the highway, roads, and buildings 

when these types of feature data usually exclude a correspondence-based method for this quality 

alignment. 

 

However, it is still needed to have a method of data refinement, as the second result in Figure 8 

needs an improvement by rejecting some outlier-prone features. The more details on data 

refinement will be covered later in Section 3.4.4.  The algorithmic structure of RDA is shown in 

Figure 9, where we have an additional step that eliminates outliers or refines the previous feature 

data. 
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Figure 8. Examples of the Automatic Data Alignment 

 

 

Figure 9. RDA Algorithmic Structure 

 

3.4.3 Monte Carlo Simulation 

To analyze how the RDA performs when a group of moving vehicles appears on a highway, we 

model them by generating noisy data from a uniform distribution on the highway. In Figure 10, 

we observe that with a higher rate of the outliers (on 40 inliers and 11 independent validating 

points) the error statistics get worse after the RDA algorithm. On the part (a), we consider 

different number of outliers and try 50 independent trials for each case. On the other part (b), we 

show a curve of computational speed in 50 trials on a Pentium IV 3 GHz computer: here 10 
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outliers are added. This simulation also explains why the automatic data alignment is more 

challenging as mentioned before. 

 

  
(a) (b) 

Figure 10. Monte Carlo Simulation and Computational Speed 

3.4.4 Data Refinement 

To improve the performance of the automatic data alignment, we suggest a method called data 

refinement (also called outlier rejection). In Figure 9, we have an additional step that can 

eliminate outliers or refine the previous feature data; our basic approach to detect a good feature 

is as follows: for a current iteration  and  

if  and , then  and the closest point in  indicate good feature points in the 

base and input, respectively. Here  and  are constants for small enough pixel error bounds. 

Remainders in the base and input correspond to outliers. For instance, Figure 4 illustrates that 

noisy points in both the base and the transformed feature data are matchless when our RDA finds 

the matching pairs for inliers. 
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Figure 11. Outlier Rejection  

 

In Figure 11, we compare average pixel errors before and after the outlier rejection method with 

50 Monte Carlo simulations by increasing numbers of noisy feature data. We have a smaller 

pixel error after outlier rejection compared to the average error before outlier rejection. However, 

this outlier rejection method is feasible when a solution is close to a true one. Hence, we apply 

the outlier rejection method only if the error bound  at an iteration index  is not too large. 

Otherwise, we see that we would accidently remove some good feature points and fail to get an 

optimal transformation. This phenomenon is shown in Figure 11 at the  trial (n = 30). In this 

experiment, we call a transformation bad if  is larger than 50. 
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Figure 12. Example of an Improved Registration by Data Refinement 

 

Figure 12 illustrates a good example of the benefit of outlier rejection: the error bound decreases 

from 7.386 to 1.602 so that the registered map with data refinement has a clearer alignment on 

the centerline of the highway and buildings. We can also consider another method to remove 

outliers. For instance, the RANSAC algorithm [16], which has been popular approach in 

computer vision, can be utilized; however, we do not consider it here to avoid an additional 

computational cost. 

 

The outlier rejection block in Figure 9 makes it possible to localize target candidates in each 

image frame. In general, there is no guarantee of detecting all the targets; however, this coarse 

localization should be helpful for initializing target tracks for tracking.  
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4. Layered Data Fusion: Multi-UAV Sensing over Urban Areas 

In this chapter, we address the problem of layered data fusion occurring within a collaborative 

and distributed sensor network. Multi-UAV sensing combined with stationary sensors has the 

potential of creating smart airborne systems for completing aerial tracking and surveillance 

missions over an urban area. However, matching two different data with multiple resolutions 

reveals the presence of large motion and dominant outliers, which makes this problem very 

difficult. Here we extend our earlier work to this type of multiple mini-UAV sensing by applying 

an information-theoretic cost criterion and cooperative optimization method. Assuming no 

zooming in the same type of cameras, we treat changes in scale-space as changes in UAVs' 

altitudes, and equivalently as changes in data resolution. Scale-space analyses indicate the 

importance of a prior adjustment of uncertain scaling factors. That is, to achieve a better 

performance in layered data fusion, it is critical to apply an approximate scaling factor first, 

within some error bounds, before applying a robust data alignment algorithm directly.  

4.1 Introduction 

Multi-level data fusion is a promising research area because many operational platforms 

consisting of mobile sensors from big aircrafts to small UAVs, including sensors attached on 

fixed platforms, collaborate for diverse applications such as surveillance [17], tracking, and 

traffic flow monitoring [18], [19]. However, recovering an optimal transformation between 

features of images from different cameras at different altitudes is nontrivial. This problem is 

referred to as multi-level/multi-resolution data fusion. Unlike the problems of a conventional 

image registration as in [6], there exist many different characteristics, since multi-level or 

layered images bring scaling factor, or equivalently resolution, issues. 

 

First, multi-level or layered images create scaling factor, or equivalently resolution, issues. One 

image with a lower resolution can be obtained at a higher level/altitude and another image with a 

higher resolution can be obtained at a lower level/altitude. In this case, the fundamental 

assumption used in most of registration problems does not work. The overlapping region can be 

very small, which causes too many outliers. In order to find the right patch on the reference 

image by transforming the input image via an optimal map, we need to make a new assumption, 

such as having a close approximation of the initial scaling factor from any available ground 

sources or from the information on UAV dynamics, before comparing the area of a common 

region in both high and low resolution data. 

 

Second, there exist few automatic feature extraction algorithms in the literature of image 

processing and computer vision for multi-level/multi-modal data fusion. We observe that in a 

high resolution data a normal corner finding algorithm as in [14] tracks vehicles whereas in a 

low resolution, or with a higher altitude for UAVs, it tracks the corner of stationary structures 

such as buildings. There have been some approaches to obtain a number of reliable 

corresponding points over a wide baseline [20] or with different resolutions [21]. However, it 

appears very challenging to obtain those reliable pairs from multi-modal data. 

 

Third, a good model of transformation is not available initially. For ortho-rectified images, we 

might rely on an affine transformation, but when comparing a low-resolution image, say from a 

Google Earth map, and a high-resolution image from our video frames, it is required to have a 

good transformation model. 
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Hence, for a successful layered sensing, we have to overcome these nontrivial issues. Recently, 

in [2], the authors developed a RDA method as one of the key requirements for successful data 

fusion. They constructed an information-theoretic cost criterion and solved an optimization 

problem by a cooperative search strategy combining the Nelder-Mead simplex and stochastic 

search methods. This method belongs to the class of feature-based and correspondence-less 

approaches. In order to achieve automatic data alignment, unexpected outliers coming from 

moving entities such as vehicles and matchless features from any non-overlapping regions, must 

be treated in an efficient way, so that the UAVs can detect moving targets and provide a 

successful transformation simultaneously via the method of data refinement or outlier rejection 

[1]. This method seems beneficial not only for refining the previous feature data, but also for 

extracting moving entities (e.g. vehicles) contained in the outlier profile. To overcome the above 

issues in the problem of layered data fusion, we extend the RDA algorithm to include weighted 

feature points for video registration and multi-resolution/multi-level data registration. 

 

In addition, the problem of registering a video sequence with a reference image is very 

challenging, as mentioned in [22], when any metadata such as sensor locations, telemetric 

information, and reference digital elevation models (DEMs) are not known. Our goal is to find 

the right patch on the reference image by transforming the input image via an optimal map in 

order to maximize the use of necessary information, contained in multi-level data, for the 

successful tracking of multiple moving targets. 

 

The remainder of this paper is organized as follows. In Section 4.2, we introduce the problem of 

layered data alignment. Section 4.3 describes a mixed optimization procedure and scale space 

analysis. The sensitivity of our cost criterion with respect to a scaling factor is investigated with 

Monte Carlo simulations. In Section 4.4, we apply our layered data fusion technique to several 

examples: video registration with a reference image, and the alignment of two video sequences. 
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4.2 Data alignment in Multi-layered Sensor Networks 

 

 
 

Figure 13. Multi-layered Sensor Network: the highest level camera, denoted by , 

monitors for large-structures with two UAVs, denoted by  and  

Let  be layered/sensed images from  where  is the 

number of different levels and  represents a space at the  level. Let  be a set of feature 

points in  with . 

 

To find an optimal transformation between two different images, we first extract their feature 

data. Then a classical feature-based registration problem can be described as follows. 

 

Problem: 

Given a cost function  and two feature data sets  and  find a transformation  

that minimizes  

 

However, in our multi-layered network, the number of the feature data on non-overlapping 

region can be larger than one from overlapping region. So, it is required to examine a specific 

local region as a subset of the original region in a high level image. 

 

Let  denote that two spaces  and  have a sufficiently large common region that the 

above problem can be applied. Let  have the following conditions: 

 
  

Finally, let  be the feature data in  restricted on  

 

Now we define the problem of layered data alignment. 
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Problem: 

Given a cost function  and two feature data sets  on  and  on  find a transformation 

 that minimizes  

 

Again, the transformation  can be any parametric function. Without loss of generality, we use 

an affine transformation with six unknown parameters first and use a projective transformation 

when the affinity does not work. 

Our goal is to achieve a robust data fusion in this multi-layer setting. 

 

4.3 Scaling Factor Analysis 

For information-theoretical matching between two feature data sets, let us consider the following 

cost model in Section 3.3.1: 

 

  (11) 

 where  is an adaptively determined variance at an iteration index  in a circular symmetric 

covariance matrix with ;  and  are the numbers of feature points in the base 

and input data, respectively. 

Let  be an optimal transformation between two feature data sets,  and  in the following 

sense: 

  

  (12) 

where  is given as in Section 4.2. 

 

To obtain an optimal parameter, we use the cooperative or mixed search strategy as in Section 

3.3.2. 

4.3.1 Scaling Factor Analysis 

In this subsection, we investigate scaling factors when other motions are zero. 

 

Let  be the scaling factor. Then the true transformation is   
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(a) 

 
(b) 

 
Figure 14. (a) One-dimensional projection of the cost with respect to a scaling 

component around the ground truth. (b) Scaling factor versus the RDA performance 
results on 50 Monte Carlo simulations 

 

Figure 14 (a) shows the sensitivity of our cost criterion with respect to scaling factors near  In  

Figure 14 (b), we demonstrate the importance of choosing a good estimation to an unknown 

scaling factor. Here we randomly generate 50 points as the base features with 10 additional noisy 

data. Input data are obtained from a certain ground truth; then 50 Monte Carlo tests are 

performed to recover the ground truth. The top of  
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Figure 14 (b) shows the estimated scaling factors when the true scaling factor is 3. At the 

bottom, the outputs with the value of one imply that average pixel error was less than 5, which 

means successful cases. The output of value zeros represents failing cases. In this Monte Carlo 

simulation, we see that within an error bound, either  or , of the true scaling factor, the 

overall alignment process works well. 

4.3.2 Weighted Feature Points 

Based on our observation of corner points obtained from general video sequences using the 

algorithm in [14], we can modify the original cost criterion (11) with weighted feature points. It 

is because corner points with higher eigenvalues, such as points from buildings, are more likely 

repeated in the following frames, unlike most of outliers. Hence, we can put more weights on 

those points assigned to stationary structures without any structure detection algorithm such as a 

building detection algorithm. 

 

Now we have 

 

  (13) 

where  and  represent weights of  and , , ,  

Gaussian kernel, the other terms being the same as before. 

 

Note that this cost model does not affect the computational efforts of the original one. 

 

4.4 Experimental Results 

Considering a distributed sensor network consisting of multiple UAVs and a fixed sensor, in this 

section, we provide the following experimental results: registration on a single video sequence, 

stitching a single video frame on a given reference image, and the registration of two different 

video sequences. 

4.4.1 Video Registration 

Suppose that we have one reference with a low resolution and a sequence of input images with 

mostly higher resolution which can be registered in the reference. Our objective here is to 

generate a series of patches. This problem belongs to a class of one fixed and another mobile 

platform scenario.  

 

In Figure 15, the feature points on a reference image are chosen based on measurements from a 

video sequence. Note that in this image with a low resolution, vehicles on a highway rarely 

appear as corners, unlike the input image on the right side, which has a higher resolution. Figure 

15 (a) shows that scaling factor is not recovered at all when we directly work on the feature data 

sets; however, Figure 15 (b) shows an improved result when we use an approximate scaling 

factor 2.37 and use weighted feature data. While an ortho-rectified reference image and an image 

from a UAV could not be explained by a single affine transformation, the transformed feature 

data, which is marked by squares, shows a reasonable group-correspondence with the feature 

data on the reference coordinate.  
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4.4.2 Simultaneous Registration and Vehicle Detection 

In this subsection, we present a preliminary result by extending the previous internal registration 

of a single UAV case into multiple UAV cases. Here we have two UAVs monitor a highway and 

west campus area of the Ohio State University.  

 

Both UAVs being assigned way points, one of which is identically put on the highway, we 

observe that some feature points from stationary structures, such as buildings and highways, are 

repeated in consecutive frames whereas moving feature points turned out not repeated as much. 

i.e., the higher the weights, the more likely the inliers are. So, in this part, we consider weighted 

feature data which is helpful to find an optimal transformation by reducing the current outliers-

to-inliers ratio of more than forty percent.  

 

Figure 16 illustrates that the same way point can make video registration possible with weighted 

feature data. The top of the figure shows the base and input images with their feature data and 

the bottom the matched feature data in the base coordinate with the registration output. With a 

more accurate video registration, both UAVs can cooperatively complete their missions. Some 

of moving vehicles can be identified as either unmatched „*‟ or unmatched „ ‟ marks. The 

registration result in the bottom and right part on the video sequences indicates the potential of 

aerial monitoring and tracking systems. 

 
Figure 15. Registration between a Fixed Reference and a Frame in a Video  

   

 
  

 (a) With a poor scaling factor (b) With a better scaling factor 
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Figure 16. Video Registration: Two UAVs generate video sequences, when they pass one 
of way points at two different times. In the bottom and left part, square marks represent 

feature points transformed into the base coordinate 
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5. Problems for Persistent Sensing 

Persistent sensing by Unmanned Airborne Vehicles (UAVs) has brought up challenging issues 

including multi-scale analysis, multi-resolution analysis, and scene localization. The multi-scale 

and multi-resolution issues occur when a mobile sensor changes altitudes or two different 

sensors with the same camera provide any redundant images from different altitudes. To 

overcome these issues, we first focus on collecting invariant feature data from the multi-

resolution representation of a high resolution image. The relationship between multi-resolution 

and multi-level/altitude representations is investigated by the feature data. Recently, an 

information-theoretic matching criterion has been developed for robust data registration without 

any knowledge of feature correspondence. This criterion is used as an intelligent computing 

algorithm of choosing a good scale-representation that helps to find an unknown scaling factor 

between two different and redundant measurements. The last issue of scene localization is 

required for identifying the scene visited before. In this work, projecting the center locations of 

image measurements onto the two dimensional reference coordinate, we demonstrate the 

trajectory of the mobile sensor based only on the extracted transformations, not relying on any 

telemetric data of the mobile sensor which is not available persistently.  

 

5.1 Introduction 

The needs for persistent and ubiquitous surveillance are growing in many research areas such as 

sensor management in a battle field, traffic analysis [18] and management [19] over a road, and 

activity monitoring by airborne video registration [17], [22] over an urban area. With the advent 

of many different types of sensors, an enormous amount of imagery data will be available. They 

contain low (near ground) level and high-resolution imageries, high level and low-resolution 

imageries, and different types of information from different types of sensors. 

 

In this work, we define persistent sensing by a mechanism that preserves the previous reference 

about a region of interest and update the current reference with a new measurement from any 

part of the region. This mechanism can be thought of as temporal ubiquity, while ubiquitous 

sensing can be as spatial persistence. Intelligent sensing requires persistent sensing with a 

structure that always preserves the previous version of itself after it changes. Hence, persistent 

sensing must provide a temporal data flow which is immutable. With no measurements, a simple 

persistence could be achieved by one reference; however, it is impossible and inefficient to rely 

on only one reference. A better method is to exploit the similarity between new and old 

information, assuming most measurements cause small changes to a current reference. For 

instance, given a series of image frames from unmanned ariel vehicles (UAVs), a temporal data 

flow can contain a finite number of versions that describe an aerial view of a scene, which can be 

constructed by a video mosaic [23] with a large view. The common region between multiple 

frames will not be duplicated, but will be shared between both the old version and the new 

version. 

 

With this new concept, persistent sensor networks must complete the following tasks: 

 the task of layered sensing 

 the task of combining multi-modal sensor information 

 the task of updating a previous reference with a new information 
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Recently, information-theoretic matching method [2] [1] has been developed. This method 

belongs to feature-based and correspondence-less approaches. Most feature based approaches in 

image registration [6] rely on the knowledge of correspondence, which is very challenging for 

feature data collected from fixed platforms and mobile platforms as UAVs and is almost 

impossible to obtain with different types of sensors. In this chapter, we further investigate the 

previous Robust Data Alignment (RDA) algorithm to multi-modal data alignment and also 

extend affine registration to projective registration. Affine registration is satisfactory with a 

smooth motion of a UAV, providing a plane-like scene. However, a projective transformation is 

needed in case of registering Google Earth images and aerial images, as you will see later. 

 

Our ultimate goal is to provide an efficient algorithm, Extended RDA, to deal with the three 

tasks described above for persistent sensing. This Chapter is organized as follows. In Section 

5.2, we introduce the three problem mentioned above for persistent sensing. Section 5.3 

describes an extended RDA algorithm as a methodology to attack the three problems. The 

previous affine registration can be extended to projective registration, and multi-resolution 

approach can provide an efficient number of invariant feature data at a different scaling factor. In 

Section 5.4, we provide some experimental results on data sets supported by the DARPA video 

verification of identity (VIVID) project. 

 

5.2 Three problems for Persistent Sensing 

In this paper we want to attack the following three problems: 

 

 Multi-level and multi-resolution data registration  

 Multi-modal data registration 

 Mosaic construction for scene localization 

The first problem is related to so-called layered sensing, because different levels due to UAV 

altitudes‟ variation affect image resolutions/dimensions. We also need to consider multi-level 

and multi-resolution data structure analysis in spatial-time space. The major part is to extract 

invariant feature data at an optimal layer for their successful registration. So, layered sensing is 

one of the key contributors to persistent sensing. 

 

The second problem occurs when different types of sensors are distributed for persistent sensing. 

For instance, we will consider data alignment between a pair of electro-optic and infrared images 

in Section 5.4.2. The major problem is to match the related information, even with asymmetric 

but complementary information. This multimodal data registration can help to achieve all-time-

sensing. 

 

The third problem of creating a mosaic needs to be solved for a highly efficient representation of 

a complex environment. We will see that the major question is how to minimize an accumulated 

error after the composition of a sequence of transformations from the current RDA algorithm. 

In Figure 17, we illustrate the three problems under a persistent sensor network. The network 

combines a layered structure with different modalities. A successful data fusion will lead to a 

high-dimensional reference with a layered information structure. 
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Figure 17. Persistent Sensor Network for Layered Sensing and Multi-modal Sensing 

 

In the following subsection, we review scale space theory. Scale factors are naturally embedded 

in a transformation, as a crucial factor, when we recover the motions among multiple image 

frames. It is expected that our flying sensors keep changing its altitude within a certain range, 

which leads to a multi-level representation of a common scene. Hence, optimal processing of 

data alignment requires its multi-scale representation. 
 

5.2.1 Scale Space Theory: Review 

Let  be an image, where  In scale space theory, scale space is a concept 

with a continuous parameter  This concept later can be applied to generate a multi-scale 

representation of an image. Now, we study the definition of scale space and a scale space 

generating operator, and introduce linear and quadratic scale space. 

 

Definition of scale space: a data structure that consists of a sequence of images with different 

resolution is known as a scale space; we write  to indicate the scale space of the image 

 

In general, a scale space generating operator  should satisfy the following two requirements: 

 Information-decreasing property: no new details must be added with increasing scale 

parameter. 

 Semi-group or scale invariance property: the convolution kernel should satisfy 

  

It turns out that the Gaussian kernel is the only convolution kernel that meets the above 

requirements and is in addition isotropic and homogeneous. 

 

Consider the following linear diffusion process: 
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The solution of the above process is known as linear scale-space [24] or Gaussian scale-space: 

 

  (14) 

where a standard deviation  of Gaussian equals  Therefore, by using Equation (14), we can 

generate a continuous family of images,  from  

 

Assuming that we can treat the scale parameter  as the time, the following diffusion process can 

establish another scale space:   

 

  (15) 

To show that the general solution of the diffusion equation (15) is equivalent to a convolution 

with a smoothing mask, we first apply the spatial Fourier transform. Then we have  

 

  (16) 

By solving the above equation, we obtain a general solution 

 

  (17) 

which is equivalent to 

 

  

Putting  it is called a quadratic scale space. We can also show the converse; that is, 

starting from the general solution (17) leads to the differential scale space. Another study of a 

class of nonlinear scale-spaces appears in literature [25] with the connection to generalized 

entropies. 

 

Let us next study the following multi-grid representations [26]: Gaussian and Laplacian 

Pyramids. Firstly, each level of the Gaussian pyramid is obtained from the previous level by a 

low pass filter. The size reduction is done with a smoothing operation to generate its scale space 

representation as follows: 
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where  is the zero level of the pyramid that is identical to the original image. For the  

level from the  level, the resolution decreases by a factor of two, and the size of the image 

decreases. The Gaussian pyramid is useful when we want to reduce the size of an image. 

 

Secondly, the Laplacian pyramid represents a sequence of bandpass-filtered images. This 

efficient scheme for a bandpass decomposition of an image is achieved by   

 
  

Note that the Gaussian and Laplacian pyramids are effective but inflexible, since the scale 

parameter changes by a fixed factor of two; however, in some cases, a continuous scale 

parameter is preferred to produce a finer scale representation. 

 

5.3 Methodology: Extended RDA  

In our previous work [1] where we developed a new scheme called RDA, information-theoretic 

matching has taken the following steps: 

 

Step 1: Extract an invariant set of feature data from each image and regard them as 

            densities of the images 

Step 2: Use the RDA algorithm to find an affine map between the images 

Step 3: Separate features into the two classes: Good feature and outlier-prone feature 

Step 4: Go to Step 2 and use the refined data from Step 3, unless a stopping criterion is  

            satisfied. 

 

Our progress towards Extended RDA (ERDA) consists of the following two parts: projective 

registration and multi-scale based feature selection. Firstly, in our previous work, we claimed 

that the RDA algorithm can handle a further extension into any parametric transformations. As 

an example, we are extending a previous affine map into another, a projective map. This sort of 

extension helps when the affine map cannot be assumed like Google Earth images and UAV 

images. Compared to the affine case, however, this extension can be highly sensitive with a 

choice of an 8-D initial parameter vector and computationally more expensive. Secondly, we are 

inserting a multi-scale or multi-resolution step to register any redundant images captured at 

different altitudes/scales. More importantly, when we deal with image data with large sizes and 

high resolutions, we need to convert them to ones with smaller sizes and lower resolutions to 

extract a sufficient class of features for feature-based registrations. The fewer features, the faster 

and more efficient the registration process. Hence, we are investigating a methodology to find 

such an efficient feature set over a scale space. 

 

More details of the two parts are provided in the following subsections. 

5.3.1 Projective Registration 

The previous RDA algorithm has assumed an affine-like motion between two related images. An 

affine map transforms a parallelogram into another parallelogram. This assumption might be 

accepted practically; however, when the image grabber moves within an uncontrolled 

environment such as a strong wind, we see that the two images cannot be explained with the 

affine motion. 
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A class of projective transformations is a superset of a class of affine transformations. By a 

projective transformation, quadrilaterals transform into quadrilaterals; that is, all the affine 

motions can be explained by a projective motion. One of the crucial extensions contained in the 

projective transformation is that the parallel lines need not be preserved. 

 

For feature vectors collected at  and  we have the following relation: 

 
  

where  is a feature vector at  and the matrix  represents a 3-by-3 

matrix with eight unknown parameters. That is, 

 

   

Those feature vectors are in a homogeneous coordinate system. A popular 2-D transformation is 

written as: 

 

  (18) 

A plausible drawback of projective registration, instead of affine registration, can be that a 

computational cost increases when we search an eight-dimensional search space rather than six. 

Moreover, when the initial parameter is not close to a true solution, the projective transformation 

is harder to recover; not only because its search space is larger and less constrained, but also 

because the unknown parameters are highly sensitive to recover. For example,  is much more 

sensitive than  or  As in Equation (18), the transformation is highly non-linear. 

 

In this part, we revisit the previous affine result [3] with the problem of registering both a 

Google earth and an UAV image, where the projective map could not be recovered. Now, we 

want to get the projective result and compare it with the previous one. In  

Figure 18, a visual comparison confirms that the projective relation should be considered for 

these two images. We think that this result can be useful for ortho-rectification purposes, treating 

the coordinate of the Google earth image as the reference. 
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(a) 

 
(b) 

 
Figure 18. An Example of Data Registration between an Aerial Image from a UAV and a 

Google Earth Image. The rectified image frame of the aerial image appears on the top of 
the Google earth image by affine registration in (a) and by projective registration in (b). 

The projective map, as a result, better explains the relationship between the two images. 

5.3.2 Gaussian Scale-space Based Estimation of a Suboptimal Feature Set for RDA 

Let  be a video frame over a time space and  be an overall data flow over a time-

scale space. As mentioned in Section 5.2.1, for a time  the Gaussian multi-grid representation 

can generate many versions, , of an image at different scales. See Figure 19, where 

layered sensing based on a UAV creates a 4-D data flow over a time-scale space. The basic idea 

behind this data structure is that coarse scales can be represented at a lower resolution, while the 

representation of fine scales requires the full resolution. 
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Figure 19. Four Dimensional Data Flow in UAV Sensing 

One of the key applications of a differential scale space is a selection of a suboptimal class, at a 

certain scale, of feature points. The computational cost of our extended RDA algorithm is high, 

when we have a large number of features. Hence, for an image having a large dimension, we 

want to reduce the number of feature, say up to less than 50, by using a multi-scale 

representation of the original high-resolution image. For example, Figure 20 shows that the 

image size decreases as the scale parameter or the level parameter increases. We also observe 

that Gaussian smoothing at a higher level provides a lower-resolution image, where the number 

of features decreases. The fact that some of weak edges are blurred can explain why the number 

of features in a lower resolution tends to decrease and why the chance of having features on 

moving vehicles on a highway decreases.  

 

 
 

Figure 20. Multi-scale Representation of an Image. Note that possible outliers like 
vehicles are averaged out at a lower resolution with a smaller image dimension. The 

number of features decreases in the order of 286, 100, and 29 

Figure 21 represents the algorithmic structure of our extended RDA algorithm. The first RDA 

block can provide an optimal scale for processing features in images. Based on this scale 

parameter, an approximate version, denoted by , of the higher resolution image, denoted by  

is obtained by  Then, the approximate version  is matched again with the lower 

resolution image, denoted by  
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Figure 21. Algorithmic Structure of ERDA 

 

5.4 Experimental Results  

5.4.1 Multi-level Registration 

Here we apply our extended RDA algorithm to the problem of multi-level data fusion. We 

believe that there exists an optimal level that provides an optimal number of features. So, we 

generate the multi-scale representations of image frames and extract features from them based on 

either the Kanade-Lucas-Tomasi (KLT) [14] or scale-invariant feature transform (SIFT) [27] 

algorithm in computer vision. Our basic goal is to detect certain features in an image that is 

optimal at a certain scale. 

 

Given a pair of Electro-optic image frames, we increase each scale parameter by a factor of two 

and collect four different versions at four different levels for each image. Next, we can collect 

features automatically; for instance, using the SIFT algorithm, we can extract local features in 

the four different image versions. Figure 22 illustrates four registration results at levels 4, 3, 2, 

and 1, from the top left to the bottom right result. We compare the registration at both the level 4 

and the level 1 in Figure 23. The registrations at the two different levels are almost identical, so 

it looks more efficient to start with a higher level rather than with a level 1. 
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Figure 22. Registered Maps at Four Different Levels. The resolution increases, as the 

level decreases from the top left to the bottom right output. 

 

 
Figure 23. Registration at Two Different Levels 

5.4.2 Multimodal Data Registration 

Here, we consider the following two different modalities/sensors in DARPA VIVID database: 

Electro-optical (EO) and infrared (IR) sensors. The EO data represents the intensity of light rays, 

while the IR data represents the degree of temperature. During daytime hours, the EO and IR 

sensors can provide related information not only because a common region exists, but also 

because there exists a connection between the light rays and the heat rays. Here we provide a 

new experimental result of multi-modal data fusion that successfully combines complementary 

information from different types of sensors via the process of data refinement in Section 3.4.4. 

 

In Figure 24 by performing multi-modal data registration, the top roofs of multiple buildings in 

the IR image are superposed on their corresponding parts of the EO image. With a certain 

threshold, say 100, applied to gray-scaled temperature values, we can use complementary 

information that the EO image cannot provide. Compared to mono-modal registration performed 

in either the EO video or the IR video, the relative motions among multiple pairs of EO and IR 

frames are more sensitive to the choice of an initial parameter vector of an affine map. The 

automatic selection of the initial parameter vector can be done based on the scores of scaling 

factors. 
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(a) 

 
(b) 

 
Figure 24. (a) The IR image is registered into the EO image. (b) Details of data refinement 
with multiple steps. The bottom right image represents a region above a threshold out of 
the transferred IR image into the base coordinate 

Since our matching algorithm can solve the problem of Multi-modal data registration such as EO 

and IR video registration, it will give maximal information for further applications using 

different types of sensors. 
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In addition, we observe that EO and IR images have a different scaling factor, even though the 

different modalities come from the two fixed EO and IR sensors attached on the mobile sensor. 

The recovered transformation reveals one of the fundamental characteristics of the two different 

modalities. 

 

A possible extension will include multi-modal video registration. In other words, the next step is 

investigate whether the output of multimodal data alignment given a pair of EO and IR images 

can help to combine both the IR and the EO videos, and generate a new video sequence that has 

an additional and complementary layer of other information. 

5.4.3 Mosaic Construction and Scene Localization 

Here, given a video sequence, we would like to recover a mosaic as a larger field of view. Video 

mosaics [23] can be useful for scene understanding, persistent tracking, video compression, and 

enhanced visualization. 

 

In Figure 25, we show a preliminary result of a mosaic from 200 successive IR image frames. 

While the alignment errors of successive images are small, we notice that those small alignment 

errors accumulate by composition operations into a reference coordinate. Hence, the result is not 

in a perfect quality, but still applicable for scenes that are featureless such as forests and straight 

roads. A new composite mosaic based on RDA can be a more compressed and informative 

version of a sequence of many images, if we improve this current mosaic quality. In literature 

[28], a looping path of images has been considered to attack this issue. However, with no loop, it 

seems still an open problem to find a solution that distributes these accumulated errors in the 

mosaic. Our future work on video mosaic will include this looping path problem and consider a 

new constraint: the continuity of an important structure as a road. 

 

 
 

Figure 25. Mosaic from 200 IR Image Frames for Persistent Tracking Applications 
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Instead of video mosaic, the trajectory of image centers is a simpler way to understand how all 

the recovered transformations translate image centers into one reference coordinate. In Figure 

26, we observe that the centers of 3750 EO image frames reflect a smooth motion of UAV 

trajectory over a region. 

 

 
 

Figure 26. The Trajectory of Image Centers from 3750 EO Images 

With the number of small and inexpensive UAVs increasing, it is feasible to build sensing 

networks for persistent sensing. In this Chapter, we addressed three problems: Multi-level/Multi-

resolution data fusion, Multi-modal sensor fusion, and Mosaic construction. 

 

We have extended the previous RDA algorithm to address the three problems. The main result 

can be summarized as follows: 

 Multi-scale and multi-resolution approach can be useful for both scale factor search and an 

optimal subset of large feature data. 

 Information-theoretic RDA algorithm can help combine different modalities such as electro-

optic and infrared sensor. Hence, we can register an additional and complementary 

information layer on top of the base information. 

 Mosaic construction and scene localization are still challenging due to an error 

accumulation, even though our preliminary result can efficiently explain a scene with one 

image instead of 200 image frames. The trajectory of center images could indicate the 

looping closing problem for an autonomous navigator. 

 

The investigation of a new local metric is necessary for the current registration algorithm; one of the 

major issues is how to measure the accuracy of our feature-based and correspondence-less data 

registration. As a plausible solution, a class of local motion vectors like an optical flow can be chosen 

over some regions of interest as a subset of the overlapping regions. If it works, the ideal solution 
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does not provide any motion vectors for a perfect matching. We think that the average norm of these 

motion vectors can be a good candidate as a new metric for RDA and mosaic quality.  
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6. Georegistration based on Georeferencing  

6.1 Introduction 

This report will discuss the problem of registering aerial images.  As presented here, the first 

step in the registration is to use the position and orientation of the camera to warp the images 

such that the resulting warped image depicts a version of the original which lies along a flat 2D 

ground map.  Pixel locations on the ground plane should be linearly proportional to actual x,y 

locations in the real world.   If the georeferencing of the image is perfect, no further processing 

is required.  The georeferenced image will accurately place its pixels in the real world.  

However, in general this is not the case, there is often significant error in the position and 

orientation of cameras.  Since the georeferencing is dependent on imperfect information, image 

to image registration techniques are required to bring the georeferenced images into alignment. 

 

This work will discuss georeferencing, registration without georeferencing, registration with 

georeferencing on CLIF2007 examples, a two image SIFT example on CLIF2007, and the issues 

encountered when using georeferencing and SIFT on CLIF 2006 dataset.  

6.2 Georeferencing Images 

 

 
 

Figure 27. Rendering Pipeline 
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The georeferencing attempts to find a transform from a point in the world expressed as a 

longitude, latitude to a corresponding image location. 

 

6.2.1 Longitude, Latitude to Pixel Locations 

The process of finding a transform which places a world coordinate correctly within an image is 

very similar to the rendering pipeline found in 3D computer graphics.  Figure 27 shows the 

rendering pipeline. 

 

First, the longitude and latitude are converted to rectangular world coordinates in meters by 

using the following expression: 

 

 

 

where  is the resulting world location. “ ” may be set to zero by assuming the location is on 

the ground plane.    is an arbitrary nearby location which will be selected as the origin.  

For the CLIF datasets, this location is in the parking lot for the Center for Automotive Research. 

 

Next, the world coordinates are transformed into camera head coordinates by using the 

orientation and position of the camera head. 

 

The transformation uses the following matrices: 

 

The pitch matrix: 

 

 

 

The roll matrix: 

 

 

 

The yaw matrix: 
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The translation matrix: 

 

 

 

A transformation for making zero degrees yaw lie north along the world‟s increasing  axis. 

 

 

 

A transformation for changing the sense of the  axis to point along the camera . 

  

 

 

The camera head to world transformation is: 

 

 
 

Similarly, the world to camera head transformation is: 

 
 

 

6.2.2 CLIF 2007 Camera 0 Orientation 

The cameras in the array are not aligned with the coordinate framework defined by the position 

and orientation obtained from the IMU.  Thus, this orientation offset is part of the gradient 

descent minimization described below.  At present the camera of interest is camera 0 from CLIF 

2007.  The orientation offset is described by an angle and a vector, where the offset is a rotation 

of angle  about the vector .  If this rotation is expressed as a homogenous coordinate 

transformation matrix  it fits into the above 3D transformations as: 
 

 

 

 

and 
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6.2.3 Perspective Projection 

Once the rectangular world coordinates have been transformed to camera centered coordinates.  

It is possible to apply a standard perspective projection: 

 

 

 

where  are undistorted image coordinates,  are the camera centered world 

coordinates,   is the focal length, and  is the optical image center. 
 

6.2.4 Lens Distortion 

The lens distortion model is a standard one found in OpenCV and other sources: 

 

 

 

where   is the distorted image plane location, and  

 

  

 

In terms of pixels   is 
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Figure 28. Estimated and Actual Locations 

 
 

Figure 29. With More Refined Camera Parameters 

6.2.5 Finding the Camera Parameters 

The “.txt” files in the supplied data do have information about the position and orientation of the 

camera head such that some of the above matrices can be filled in and evaluated.  However, 

there is not any explicit information concerning the following: 
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 The orientation of camera 0 with respect to the camera head 

 The image center 

 The focal length 

 The camera lens distortion 

 

The above information can be estimated by minimizing the residuals between the world to image 

transformation‟s result and actual image locations of known world positions. 

 

For instance, Figure 28 shows the estimated and actual locations for the series of world/image 

point pairs.  The image in Figure 28 is image 68 camera 0. 

 

Figure 28 displays the estimated and actual locations with the following assumptions 

 

 Camera 0 is rotated 9.10 degrees about the x-axis (roll) of the camera head 

 The image center is at 2008,1336 (width/2, height/2) 

 The focal length is 15000 pixels 

 There is no lens distortion 

 

The green dots are the actual pixel locations corresponding to a longitude and latitude taken from 

Google Maps.  The red dots are the estimated pixel location of a longitude and latitude.  One can 

see that the red and green dots do not coincide.  However, they are generally close. 

 

If the residuals between the estimated and actual image locations are minimized using the 

gradient descent algorithm described below, a more refined camera model results: 

 

 Camera 0 is rotated 9.11 degrees about the vector [0.997 0.068 0.0301] 

 The image center is 2066.095,1342.185 

 The focal length is 15529.135, 15689.47 

 The lens distortion coefficients are 
 

 

Figure 29 shows the red and green dots in closer agreement.  The more refined camera model 

may be obtained by minimizing the sum of the residuals between actual and world transformed 

image locations.  In this particular case, this was  accomplished with a gradient descent 

algorithm where the function being minimized is: 

 
 

 

where the variables are:  

 
 The focal length in x,y pixels 
 The optical image center 

 
The lens distortion coefficients  

 The orientation offset of camera 0 wrt the camera head 
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The function itself is: 

 

 

where  is the image location of the world point , 

given parameters , and 

 

is the image point corresponding 

to .  The world point  was found by using Google Maps to obtain a longitude and latitude for 

visually distinctive locations  found in the image. 

 

The minimum values are: 

 

 
15529.14 Focal length in pixels 

 
15689.47 Focal length in pixels 

 
2066.095 Optical image center in pixels 

 
1342.185 Optical image center in pixels 

 
-0.142997 Radial lens distortion coefficient 

 
8.782177 Radial lens distortion coefficient 

 
-0.308878 Radial lens distortion coefficient 

 
0.016646 Tangential lens distortion coefficient 

 
0.020820 Tangential lens distortion coefficient 

 0.158992 3D orientation angle offset in radians about 
 

 0.997232 3D vector element x 

 0.067951 3D vector element y 

 0.030176 3D vector element z 

 

The georeferenced versions of the images found in  

Figure 30 and Figure 31 may be found below in Figure 32 and Figure 33. 
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Figure 30. Sample Image 1: Image Frame 100 from Camera 0 

 

 
 

Figure 31. Sample Image 2: Image Frame 110 from Camera 0 
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Figure 32. Georeferenced Version of Sample Image 1 

 
 

Figure 33. Georeference Version of Sample Image 2 
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6.3 Image to Image Registration 

In addition to georeferencing the images with the position and orientation of the camera, images 

must be registered by finding a transform from some set of correspondences.  Image to image 

registration attempts to find a transform which can transfer a pixel location in one image to a 

pixel location in another image.  If the pixel locations represent the same point on the same 

object in the world, this transformation is said to “register” the images. 
 

6.3.1 The Affine Transform 

The 2D affine transform may be used to transform locations in one georeferenced image to 

locations in another georeferenced image.   

 

A two dimensional affine transform is given by: 

 

 
 

where 

 

is the transformed location of  . 

 

Although the 2D affine transform can rotate, scale, shear and translate two-dimensional data, a 

2D affine transform has two major problems when used to register general non-georeferenced 

images.  First, while a 2D affine transform can represent an orthographic projection of a 3D 

object, it cannot generally represent a perspective projection of a 3D object.  This means that 

images of objects which are not perpendicular to the z-axis of the imaging camera cannot be 

registered exactly with a 2D affine transform.  Second, any camera that uses a lens suffers from 

lens distortion that cannot generally be modeled with a 2D affine transform. 

6.3.2 Using Correspondences to find an Affine Transform 

A registering affine transform may be found from a set of correspondences.  If the set of 

correspondences does not have any wild outliers, a straightforward least squares formulation 

may be used.  One may find the six 2D affine transform parameters  such that

 

is 

minimized where  

 

 

 

and  is a  by 6 matrix where  is the number of correspondences and  is: 

 

 

 

and  is a vector of size : 
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and  indexes the correspondences  to . 

 

Generally, however, the set of correspondences have significant outliers which need to be 

removed before further evaluation.  For this reason, it is necessary to include a Random Sample 

Consensus (RANSAC) initial preprocessing step. 

6.3.3 RANSAC Preprocessing 

RANSAC is a general approach to fitting a primitive such as a 2D line or 2D affine transform to 

a set of data.  The case of fitting a line to a single set of 2D points is particularly simple and will 

serve as an example.  In this case, two random points are selected, and the line defined by these 

two random points is found.  This line is a hypothesis for the desired result, and this hypothesis 

line may be tested for fit against the existing set of 2D points.   After many hypothesis line trials, 

the hypothesis line which has the best support in the 2D point set is the desired result.   

 

The primary advantage of a RANSAC approach over a least squares fit is that RANSAC is 

capable of completely ignoring outliers.  While a least squares fit may be significantly affected 

by outliers, a RANSAC fit will focus on a single primitive interpretation of the data.  The 

primary disadvantage of a RANSAC approach is that it makes an incorrect assumption that the 

data points which are selected for the winning  hypothesis formulation are perfect and error-free.  

Given the advantages and disadvantages of RANSAC, this registration algorithm uses a 

combination of RANSAC and least squares.  First, outliers are eliminated with RANSAC.  

Second, the remaining points are used in least squares to find the final transform. 

 

The 2D affine transform RANSAC is different in several details from the line-finding RANSAC 

example described above.  Rather than selecting two random data points from a single set of 

data, the 2D affine transform RANSAC selects three correspondences from two data sets, and 

solves the now fully determined equations described above in the least squares discussion with 6 

equations and 6 unknowns.  Pseudo code for the 2D affine RANSAC follows: 

largest_number_of_support_points=0 

for each trial 

     corrs=select_three_correspondences 

     affine_hypothesis=solve_for_affine_xform(corrs) 

     number_of_support_points=get_number_of_support_points(affine_hypothesis) 

     if (number_of_support_points>largest_number_of_support_points)  

                  best_affine_hypothesis=affine_hypothesis 

                  largest_number_of_support_points=number_of_support_points 
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6.4 Finding Correspondences 

Several methods of finding correspondences were tried during this study.  Some methods were 

more successful than others, and the method that seems to offer the highest performance in the 

sense of being robust against large changes in lighting, position changes and orientation changes 

is the Scale Invariant Feature Transform(SIFT) algorithm developed by David Lowe.  However, 

initially, much of this work was accomplished by using the algorithm described below. 

6.4.1 Point Pattern Matching 

 

Figure 34 show two overlapping images.  In each image there are red dots representing the 

locations of corners. In this case the corners were found with OpenCV‟s KLT corner detector. 

An affine transform is desired which minimizes some cost function of the registration error 

between each image‟s sets of corners. 

 

  
 

Figure 34. Corner Features in Two Overlapping Images 

In this approach a RANSAC type algorithm is used to identify a set of correspondences that 

generate an affine transform minimizing the cost function.  The discovered correspondences are 

displayed in Figure 35 has red lines drawn between image locations. 
 

 
 

Figure 35. Discovered Correspondence 
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The algorithm first does a point by point comparison between the two sets of corners.  Unlike 

many algorithms, it does not use a rotation and noise invariant feature description vector to 

decide whether two corners are likely to represent the same location on the same object. Rather, 

the algorithm will look at the neighbors of the two points under consideration and attempt to find 

a rigid 2D affine transform which will make the neighbors match according to some cost 

function. 

 

As an example, Figure 36 shows two points, P1 and P2, being compared with each other.  In this 

case, P1 and P2 are judged to be very similar because a rigid 2D affine transform can be found 

which will make the neighbors of P1 and P2 match.  This matching rigid 2D affine transform is 

found by evaluating RANSAC hypotheses. These RANSAC hypotheses are generated by 

randomly selecting one neighboring point correspondence in addition to the center point P1 to 

P2 correspondence. The use of the rigid 2D affine transform rather than the general 2D affine 

transform allows the use of two correspondences rather than the usual three. 

 

 
 

Figure 36. RANSAC Hypotheses 

If a rigid 2D affine transform cannot be found which matches P1 and P2 and their neighbors, 

then P1 and P2 are judged to be unlikely correspondences, and another two points will be tested. 

 

After a set of potentially matching points is found, a set of non-rigid 2D affine transform 

RANSAC hypotheses are generated which are tested according to the global cost function.  The 

best RANSAC hypothesis is retained and used to cull from the correspondence set any high 

residual correspondences.  The remaining correspondences are then dropped into a least squares 

minimization function and a resulting 2D affine transform is returned as the result. 

 

6.4.2 Aerial Imagery 

 

Figure 30 and Figure 31 show images 100 and 110 from camera 0 CLIF 2007 dataset. The 

registration algorithm attempts to find a 2D affine transform which best fits the corners. 

 

Figure 37 shows the correspondence chips found by the algorithm.  Because the aerial images 

are so much larger in terms of resolution than the desk scene shown in  
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Figure 34, the thresholds on the residuals had to be increased in order to accept the 24 

correspondences shown in Figure 37. These 24 correspondences resulted in the following affine 

transform: 

 

 

 
Figure 37. 24 Correspondences  

6.4.3 Error in the Non-Georeferenced Example 

Particularly with large images, it‟s possible for the resulting 2D affine transform to have areas of 

the image where pixels have an unacceptable error.  If one is attempting to track vehicles, this 
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error can be a significant fraction of a vehicle length.  The average error for the randomly 

selected set of points is 4.58 pixels.  Any random image locations which were on rooftops were 

excluded.  Also, any image location set which didn't show a distinct error offset was excluded.  

Finally, any image location set which transformed to a non-image location was excluded. 
 

 
 

Table 2. Computed Errors in Non-Georeferenced Images 

6.4.4 Error with the Georeferenced CLIF2007 Images 100 110 

Theoretically, the rectified images are already registered.  However, technically, this is not the 

case.  Small orientation errors in the IMU data will cause the same world location to be offset 

from image to image.   However, if the registration algorithm is now applied to these images, the 

2D affine transform may be more applicable since the images, except for tall buildings, lie “flat”.  

The rectified images in Figure 38 have been translated such that the black regions around the 

periphery are minimized.  Note that the corners of the rectified image contact the edges of the 

image.  Thus, the translation offset provided by the transform to world coordinates is not nearly 

as large as seen in Figure 32 and Figure 33.  

 

If the affine transform for Figure 32 and Figure 33 is found by the algorithm described above, 

the following transform results: 

 

 

 

Note that the rotation matrix is very nearly the identity matrix, while the translation portion 

reflects the translations necessary to get the rectified images to fit into a small rectangular frame. 
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Table 3. Computed Errors in Georeferenced Images 

6.4.5 SIFT 

It was found that the SIFT algorithm outperforms the point pattern matching algorithm described 

above.  In the latter stages of this work, the focus moved to the SIFT algorithm. 

 

The SIFT algorithm operates by first finding feature points.  It creates a set of difference of 

Gaussian (DOG) images at steadily increasing scale.  The DOG images are then searched for 

local extrema.  These local extrema form SIFT features.  The  location and scale of each 

SIFT feature is noted, and a feature orientation is found by locating maximum bins in a gradient 

histogram.  If there is more than one dominant direction, the feature is divided into two different 

features.   

 

The DOG images are intended to be an approximation to the Laplacian of Gaussians scale space 

operator which attempts to find maxima of the divergence of the image gradient as the image is 

convolved with Gaussian functions of increasing sigma. 

 

Once the SIFT features are found, the location, the scale and the orientation of the feature is used 

to find a 128 item descriptor vector for the feature.   The SIFT feature descriptors are matched by 

using a kd-tree to efficiently find Cartesian nearest neighbors.  A kd-tree places a set points 

either to the right or left of a root node depending on whether a selected vector coordinate is 

greater than or less than the root node's value.  A kd-tree is similar to the binary space 

partitioning (BSP) tree used in polygon rendering except that the dividing planes in a BSP-tree 

are arbitrary while a kd-tree's planes are perpendicular to the axes of the space generated by the 

vector-valued points which are placed in the tree. 
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6.4.6 Two-Image SIFT Example 

 

Figure 38. Two Rectified Aerial Images: Frame 68 and 568 from Camera 0 
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As an example of finding SIFT correspondences in aerial images, consider Figure 38 where two 

georeferenced images centered on Ohio Stadium are 500 frames apart taken from the CLIF 2007 

dataset.  Specifically, they are camera 0 frame 68 and camera 0 frame 568. 

 

In Figure 38, the stadium is visible at the center of the 1.8 x 1.5 km frame, with St. John's arena 

just to the north of the stadium.  These images have been artificially lightened since the camera 0 

CLIF 2007 data tends to be dark and low contrast.  The images have significant overlap where 

correspondences may be found.  Several example correspondences out of 161 are shown below 

in Figure 39, these correspondences are taken from the raw image, so the contrast is not 

particularly good. 

 

 

Figure 39. Examples of Correspondences 

6.4.7 CLIF2007 and Electro-Optical Mid-Level Images  

A similar example of using SIFT was also done using CLIF 2007 images and the mid-level EO 

data, and the results for finding correspondences were similarly good even though the images 

were taken by different cameras at different times.  However, the mid-level EO images are 

inconvenient to include in this report due to ITAR restrictions. 
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6.5 Georeferencing the CLIF 2006 Data 

 

 

Figure 40. Frame 000003-003051 from CLIF 2006 Dataset 

Figure 40 shows the results of the calibration procedure for frame 000003-003051 from the 

CLIF 2006 dataset.  The green dots in Figure 40 are image locations while the red dots are 

transformed longitude and latitudes.  Expressed as a table, the above data looks like Table 5 

where there are 26 widely spaced correspondences between the green image coordinates and the 

red longitude and latitudes. The minimized residual sum of 248.7 pixels gives an average error 

of 9.6 pixels. The minimizing camera parameters are summarized Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4. Camera Parameters 

 Rotation Angle -8.09 degrees 

Rotation Vector X 0.998639 

Rotation Vector Y 0.041411 

Rotation Vector Z 0.031710 

Focal Length X 8838.48 

Focal Length Y 9488.43 

Optical Center X 2005.24 

Optical Center Y 1299.68 

Distortion Coef k1 0.032679 

Distortion Coef k2 2.744133 

Distortion Coef k3 0.165224 

Distortion Coef p1 0.008055 

Distortion Coef p2 0.011938 
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X image (green) Y image (green) Latitude (red) Longitude (red)

3416 1464 40.004254 -83.017049

3423 1448 40.004236 -83.016922

3403 1452 40.004369 -83.017015

3468 1277 40.004211 -83.015972

3474 1230 40.004239 -83.015734

2602 1609 40.010473 -83.021592

2666 1403 40.010284 -83.020114

2691 1850 40.009179 -83.022335

2606 2042 40.009571 -83.023856

2620 1978 40.009576 -83.023427

2022 1411 40.017301 -83.024223

1971 1461 40.017804 -83.024894

1647 1000 40.023578 -83.024451

1543 1074 40.025100 -83.025830

1142 1918 40.029804 -83.036328

1164 1799 40.029919 -83.035057

381 1317 40.053234 -83.043621

370 1272 40.053936 -83.043466

257 1303 40.058116 -83.046134

623 485 40.049002 -83.031398

606 454 40.049686 -83.031350

623 485 40.049002 -83.031398

606 454 40.049686 -83.031350

1946 2268 40.016097 -83.029982

1964 2208 40.015995 -83.029436

1957 2205 40.016116 -83.029497

 
Table 5. Image to World Correspondences 

 

If one uses the camera parameters found in Table 4 to warp image 000003-003051 (the original 

in Figure 27) such that the rectangular coordinates derived from the longitude and latitude lie in 

an image plane centered on Ohio Stadium (40.001616,-83.019733). The image in Figure 41 

results. Figure 28 represents an approximately 1.8 x 1.5 kilometer region (9008 x 7672 pixels at 

0.2 meters/pixel). 

 

The warped image is not entirely contained in the 1.8 x 1.5 kilometer output region because 

portions of the image are simply too far away.  The CLIF2006 dataset uses a shorter focal length 

lens than the CLIF2007 dataset, and the left side of the image in Figure 40 is rather close to the 

horizon.  In the particular case of the warped image in Figure 41, the left side of the image is 5.4 

kilometers away from the center of Ohio Stadium. 
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Figure 41. Warped 000003-003053 

 

A sequence of georeferenced frames similar to three examples (000003-002200,000003-002250 

and 000003-002300) seen in Figure 42 can be created from the camera parameters found in 

Table 2.  Ideally, if the imu, gps and calibration are perfect, these warped images will be 

stabilized as well.  However, the IMU is far from error free.  The resulting georeferenced images 

have significant amounts of error. 
  

 
 

Figure 42. Georeferenced Frames with Errors 

6.5.1 Errors from IMU, Calibration in CLIF 2006  

Due to the IMU/calibration error, georeferencing the images with IMU data is insufficient for 

stabilization.  However, a set of SIFT correspondences may be found which can provide an 

affine transform which attempts to bring the georeferenced images into alignment.   Because the 

georeferenced images are supposed to be orthonormal, the affine transform is more appropriate 

than a homography or projective transform.  Generally, the IMU derived georeferenced images 

do not require a great deal of scaling or rotation, so the 2x2 affine matrix tends to be close to the 
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identity matrix.  However, the translation required to bring the georeferenced images into 

alignment can be substantial.  This translation can be recorded and reported as a reasonable 

metric for IMU/calibration error.  This error is shown in Figure 43. 

 

 
 

Figure 43. SIFT Alignment Translation 

Figure 43 shows the alignment translations for 70 frames from 000003-002230 to 000003-

002300.  The green line represents the x error while the red line represents the y. Figure 44 

shows the total error. The error is substantial. The average total error is 270 pixels. Since the 

images are georeferenced to 0.2 meters per pixel, 270 pixels represents 54 meters. This error 

may be large enough that the assumption that the perspective effects of the camera have been 

eliminated or ameliorated by the georeferencing may be false. The error is also high enough that 

the elevation for a particular pixel cannot be found from a DEM with sufficient accuracy.  
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Figure 44. Total Alignment Error 

6.5.2 Errors from IMU, Calibration in CLIF 2007 

The error for an example CLIF 2007 camera 0 can be found in Figure 45 and Figure 46.  In this 

case the average error is 103.95 pixels. 

 
 

Figure 45. CLIF 2007 Example Alignment Error 
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Figure 46. CLIF 2007 Absolute Alignment Error 

6.5.3 Post SIFT Feature Stabilization Error 

Figure 47 shows four frames from a stabilized example video included in this report.  The left 

side of each frame is an extracted sub image of the scaled right side.  The extracted sub image is 

the intersection of Woody Hayes Drive and Cannon Drive.  

 

Table 6 shows the manually observed error at location (157, 89) of the video frames shown in 

Figure 47.  The average error in X is -2.53 pixels, while the average error in Y is 2.07.  At the 

scale of the georeferenced image, these errors correspond to -0.51 meters and 0.41 meters 

respectively.   In the resulting example video included in this status report, it is intended that the 

zoomed-in left side of the frame show fine detail while the right side of the frame shows a scaled 

version of the entire stabilized frame. 
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Figure 47. Four Frames from a Stabilized Video 

 

Table 6. Measured Error at Image Location (157, 89) 

6.5.4 Problems Encountered with the CLIF2006 Data 

For several reasons, the CLIF2006 dataset proved problematic.  The images in the dataset were 

taken by a shorter focal length lens than the CLIF2007 data (approx 9000 pixels versus approx 

15000 pixels), and the cameras were flown at a lower altitude (approx 7300ft versus approx 

9200ft).  Also, the viewing angle of the CLIF2006 dataset was very shallow.  The flat viewing 

angle of the CLIF2006 data caused the georeferenced version of image 000003-003051 to 

Frame # Original X Original Y Current X Current Y X Error Y Error 
X Error 

Meters 

Y Error 

Meters 

1 157 89 157 89 0 0 0 0 

2 157 89 159 88 -2 1 -0.4 0.2 

3 157 89 159 89 -2 0 -0.4 0.0 

4 157 89 159 86 -2 3 -0.4 0.6 

5 157 89 159 87 -2 2 -0.4 0.4 

6 157 89 161 86 -4 3 -0.8 0.6 

7 157 89 160 86 -3 3 -0.6 0.6 

8 157 89 161 86 -4 3 -0.8 0.6 

9 157 89 159 87 -2 2 -0.4 0.4 

10 157 89 160 88 -3 1 -0.6 0.2 

11 157 89 162 87 -5 2 -1.0 0.4 

12 157 89 159 87 -2 2 -0.4 0.4 

13 157 89 160 87 -3 2 -0.6 0.4 

39 157 89 159 87 -2 2 -0.4 0.4 

42 157 89 158 86 -1 3 -0.2 0.6 

60 157 89 158 87 -1 2 -0.2 0.4 

         

  Average Error -2.53 2.07 -0.51 0.41 
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largely lie outside the 1.8 km by 1.5 km output region as shown in Figure 17.  In contrast, the 

CLIF2007 data tended not to lie outside the 1.8 x 1.5 km output region at all.  The flat viewing 

angle also causes the CLIF2006 data to have significant parallax effects when viewing objects 

which lie off the ground plane.  As an expedient, the SIFT template frame is modified such that 

features from tall objects are masked away.   However, the masking of tall structures cannot 

change the fact that the SIFT features are not holding up particularly well as the aircraft circles.  

The aggregate changes in geometry and lighting conditions mean that a single template frame's 

SIFT descriptors cannot continue to make correspondences for more than 100 frames or so.   

 

A fix for this problem would be to abandon using a masked single template frame, and instead 

use a database of SIFT descriptors which are not tied to a single template at all.   
 

6.6 Conclusion with Recommendations for Future Use of SIFT 

The 2D affine transform cannot generally register aerial images.  One method of dealing with 

this inability is to attempt to warp image points onto a 2D map by using the position and 

orientation of the camera.  However, this method is fundamentally limited by the accuracy of the 

sensors which measure the camera's current position.  An image to image registration step is still 

required to bring images into alignment.   

 

Robust image to image registration is accomplished here by finding sets of image 

correspondences with the SIFT algorithm and using a combination of RANSAC and least 

squares to find a registering transform.  In the two-image SIFT example above, images from the 

CLIF 2007 dataset which were 500 frames apart found 161 correspondences, revealing a 

substantial degree of robustness.  The CLIF 2006 dataset was more problematic, but the 

CLIF2006 dataset viewing angle was quite shallow in comparison to the CLIF 2007 dataset.  A 

shallow viewing angle combined with lower aircraft altitude and wider field of view mean that 

the viewing aspect of the ground changes significantly as the aircraft orbits.  Improved use of the 

SIFT algorithm would incorporate SIFT descriptors from multiple template frames rather than 

the single template frame used on the CLIF2006 dataset. 

 

If SIFT proves to be robust enough, it might be possible to create a database of SIFT descriptors.  

This database of SIFT descriptors could be annotated with longitude, latitude and elevation.   

The IMU's position and orientation information could be used to limit the SIFT descriptor 

database search to the SIFT descriptors that the camera “should” be seeing. 
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7. Conclusion 

With the number of small and inexpensive UAVs increasing, it is feasible to build sensor 

networks for persistent sensing. In this report, we presented a new RDA algorithm for precision 

registration. Addressing some issues occurring in a persistent sensor network, we apply RDA for 

three problems: Multi-level/Multi-resolution data fusion, Multi-modal sensor fusion, and Mosaic 

construction. 

 

The main result can be summarized as follows: 

 Multi-scale and multi-resolution approach can be useful for both scale factor search and an 

optimal subset of large feature data. 

 Information-theoretic RDA algorithm can help combine different modalities such as electro-

optic and infrared sensor. Hence, we can register an additional and complementary 

information layer on top of the base information. 

 Mosaic construction and scene localization are still challenging due to an error 

accumulation, even though our preliminary result can efficiently explain a scene with one 

image instead of 200 image frames. The trajectory of center images could indicate the 

looping closing problem for an autonomous navigator. 

 

Future work should aim to achieve the following: 

 Multi-modal video registration: it would be interesting to combine both the IR and the EO 

videos, and generate a new video sequence that has an additional and complementary layer 

of other information. 

 A new metric for RDA and Mosaic quality: the average norm of local motion vectors near 

invariant features can be a good candidate. 

 Geo-indexing or metadata fusion for both UAV navigators and layered video registration: 

we will investigate the methodology to couple the current data alignment scheme with the 

problem of UAV dynamics and its self-localization. 

 Multi-modal fusion based persistent filtering: successful data fusion will lead to the overall 

performance improvement for tracking and surveillance by utilizing the current updated 

reference.  

 

 

  



 

69 

Appendix A 

General Description of How to Use RDA Code 

 

A.1 INTRODUCTION 
This document explains how to build and use the klt_engine and RDA programs.  The 

klt_engine implements the Kanade-Lucas-Tomasi Feature Tracker to find points of interest 

(mostly corners) in pgm image files and attempts to track those points through subsequent 

images. The output of this program can be passed to the RDA search program, which attempts to 

find an optimal transformation between two sets of feature points.  The two programs can be 

used in tandem to analyze successive video frames to find the way the camera moved between 

frames. 

 

The remainder of this Appendix A is broken into four sections, explained below: 

QUICKSTART describes how to get up and running quickly using the klt_engine and RDA 

programs. 

BUILD INSTRUCTIONS describes how to build the programs. 

USE INSTRUCTIONS details common uses for the programs. 

DETAILS/Additional Features shows miscellaneous details, including the input and output data 

formats for RDA and klt_engine, with three additional features.  

                          

A.2 QUICKSTART 
There are two shell scripts in the main directory to quickly get you up and running with the 

contained programs.  To first build the program, run: 

 
   $ ./build_me.sh 

 

This script builds the programs with the most common optimization flag, and places the built 

programs (RDA and klt_engine) into the main directory. Next, use the perl script in the main 

folder to analyze successive frames, like this: 

 
 $ ./find_transforms.pl 

 

This perl script reads the files klt_params and RDA_params for the parameters you want to run 

the klt_engine and RDA algorithm with. The files are initially loaded with the default values for 

each variable. For instance, if you run it as it is, you will get something like: 

 

      1.0021  0.00042714   -0.014434     0.99974     -1.9429    -0.10613; 

      1.0005  0.00042739   -0.019781     0.99963    -0.64177   -0.014042; 

 

where the first line is the transformation between img0 and img1 and the second line is the 

transform between img1 and img2. 

 

Examining klt_params and RDA_params shows you how to change the values. Additionally, 

you can comment out a line with a pound sign (#) at the beginning of the line to simply accept 

the default value. The only field that is required is -f [file list] for the klt_engine. 
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A.3 BUILD INSTRUCTIONS 
To compile the program, type make at the command line. The makefiles used in building the 

program read in user supplied compiler flags in the environment variable BUILDFLAGS.  As an 

example, if you want to compile with the flags -O2 and -Wall enabled, run: 
 

     $ make BUILDFLAGS="-O2 -Wall" 

 

or, if you want to have the options persist between builds, 
 

 $ export BUILDFLAGS="-O2 -Wall" 

 $ make 

 

We highly suggest passing the flag "-O3" to the compiler using the BUILDFLAGS variable.  

This optimization flag can greatly reduce the runtime of both the klt_engine and RDA binaries 

(depending on your system). 

 

A.4 USE INSTRUCTIONS 
klt_engine takes a list of pgm image files as command line arguments, finds "interesting" points 

in the images, and outputs those points as a list of feature points to standard out in a binary 

format. The image files are processed in the order they are passed to the klt_engine, and the 

feature points are output in the same order the image files are processed. 

 

RDA reads a list of feature points from the standard input. RDA reads feature points in a binary 

format that matches the feature points generated by klt_engine. The output is printed on standard 

out, with one line per calculated transform. Therefore, if there are N sets of feature points input 

on standard in, and the command line specifies the number of  

iterations to be M, RDA will print M*(N-1) lines of output, one per calculated transform. 

 

A typical experiment may be to find the transforms between ten separate video frames.  

Assuming the video frames are stored as ten pgm image files, named img0.pgm through 

img9.pgm, the experiment can be run as a single line: 

 
 $ ./klt_engine -f img[0-9].pgm | ./RDA 

   

The output for this will resemble: 

      1.0021   0.0006443   -0.012911      1.0001     -2.1373    -0.20272; 

      1.0005  0.00043043   -0.019785     0.99963    -0.63912   -0.014061; 

      1.0004 -2.8869e-05    -0.01505           1     -1.4562    0.012806; 

      1.0013   0.0017936   -0.014382      1.0002      -1.707     -0.4164; 

     0.99904  0.00078372   -0.018393     0.99941    -0.51247   -0.056753; 

       1.001  0.00053601   -0.012109     0.99955     -1.9443   -0.067654; 

     0.99984   0.0011855   -0.014857     0.99847     -1.3059     0.01586; 

      1.0001  0.00089846   -0.017233     0.99978    -0.98253    -0.16618; 

      1.0008  0.00085932   -0.010806     0.99909     -2.0087   -0.057117; 

 

A.5 Details and Additional Features 
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It is possible that RDA will give slightly different results on different machines, using different 

compiler flags, and other, similar changes. Because of the way RDA searches the optimization 

space, even very slight differences in floating point rounding, reordering of floating point 

operations, and differing random number generation can change to final answer. In order to iron 

out bugs however, the same binary on the same machine given the same input will always give 

the same answer (there is a constant seed to the random number generator). 

 

The klt_engine output and RDA input data formats are identical, to make running them together 

simple.  This format is illustrated below: 

 

        INT(n),FLOAT(p0.x),FLOAT(p0.y),INT(p0.weight), 

        FLOAT(p1.x),FLOAT(p1.y),INT(p1.weight), ... , 

        FLOAT(p(n-1).x),FLOAT(p(n-1).y),INT(p(n-1).weight) 

   

, where INT or FLOAT is the C data type, and what it represents is in parenthesis. So, 

FLOAT(p0.x) holds the x value of the zeroth feature point, FLOAT(p1.y) holds the y value of 

the first feature point, etc. The weight of the feature point represents how many previous frames 

that particular feature point was present in. INT(n) holds the number of feature points for this 

particular image.  In summary, for each image file, klt_engine outputs an integer that holds the 

number of feature points, and two floating point numbers and an integer for each feature point. 

 

A quick code snippet to read this binary input data format is below. The snippet reads the data 

from standard in, puts x values in the px array, y values in the py array, and the weights in the w 

array. 
 

   read_num = fread(&input_size, sizeof(int), 1, stdin); 

 if(read_num == 1){ 

   for(i=0;i<input_size;i++){ 

      read_num = fread(&(px[i]),sizeof(float),1,stdin); 

      read_num = fread(&(py[i]),sizeof(float),1,stdin); 

      read_num = fread(&(w[i]),sizeof(int),1,stdin); 

   } 

     } 
 

Three new features have been considered: 

 

 Consideration of feature "weight" in cost: This feature utilizes the klt feature detection 

algorithm to assign a weight to features that survive several consecutive video frames.  The 

weight is then used to place more importance to features that appear to be "stationary", and 

less importance to more "ourlier-prone" features. This is controlled by the KLT_WEIGHTS 

flag in the RDA program. For information on how to set (and unset) the flag, run RDA -h. 

The default value is 0, so that feature point weights are not used. 

 Reuse of the previous transform, if the previous transform's error is less than the threshold 

defined by TRANSFORM_REUSE_THRESHOLD: This feature allows RDA to reuse the 

previously found transformation for the starting point of the next search, if the previous 

error is below the user-definable TRANSFORM_REUSE_THRESHOLD.  This feature will 

hopefully speed up a search, if the transforms from one frame to the next are largelt stable.  
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The motivation for using a threshold is that if the previous transform had an unusually large 

error, it will probably be better to start over from scratch.  The default value for 

TRANSFORM_REUSE_THRESHOLD is -1, which effectively disables the reuse.  For 

more information on how to set this runtime variable, 

   run RDA -h. 

  

 Elimination of points from the search based on the weight found in the klt step. This is 

performed using two thresholds: ELIM_POINTS_THRESHOLD, and 

MIN_RATIO_POINTS. ElimPointsThreshold is the target threshold -- so 0.5 throw out 

points whose weight is less than half of the maximum weight (adjusted for the minumum 

weight).  However, since this may throw out lots of potentially useful points, 

MIN_RATIO_POINTS defines a hard minimum on the number of points to include in 

calculating RDA. To always include all the points in the calculations, set 

MIN_RATIO_POINTS to a value >= 1. 
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Appendix B 

Code (“stabilize_one_frame”, “geo_ref” ) Use Example 

 

B.1 Code “stabilize_one_frame” 

The program “stabilize_one_frame” was developed on a Linux Red Hat system with the libraries 

and include files for OpenCV and Gnu Scientific Library (GSL) in standard locations.  Although 

“stabilize_one_frame”'s compilation has not been tested on other Linux distributions, it should 

compile easily as long as OpenCV and GSL are installed. 

Compiling “stabilize_one_frame” should be as simple as issuing the “make” command after 

moving the current working directory to the “geo_reference” directory.  One should see the 

following: 

[martinj@crl13 sift_stab]$ make 

gcc -g -I. -I/usr/include/opencv -c sift.c  

gcc -g -I. -I/usr/include/opencv -c kdtree.c 

gcc -g -I. -I/usr/include/opencv -c minpq.c 

gcc -g -I. -I/usr/include/opencv -c xform.c 

gcc -g -I. -I/usr/include/opencv -c utils.c 

gcc -g -I. -I/usr/include/opencv -c keypoints.c 

gcc -g -I. -I/usr/include/opencv -c affine_warp.c 

gcc -g -I. -I/usr/include/opencv -o stabilize_one_frame stabilize_one_frame.c sift.o 
kdtree.o minpq.o xform.o utils.o keypoints.o affine_warp.o -L/usr/local/lib/ -lm -lcv -

lhighgui -lgsl -lgslcblas 

[martinj@crl13 sift_stab]$ 

The SIFT code compiled here (sift.c, kdtree.c minpq.c utils.c) was written by Rob Hess 

(hess@eecs.oregonstate.edu). 

“stabilize_one_frame” may be invoked as shown below: 

[martinj@crl13 sift_stab]$ ./stabilize_one_frame template.pgm 000003-002195.pgm  

got 42 sift correspondences 

number of matches 37 

found 37 ransac matches 

low res: 

[  1.02554950   0.03187709]    [ 12.74184134  -642.96184678] 

[  0.02683933   0.99919101] 

got 26 sift correspondences 

got 45 sift correspondences 

got 8 sift correspondences 

no features found! 

got 25 sift correspondences 

got 21 sift correspondences 

got 9 sift correspondences 

got 8 sift correspondences 

got 9 sift correspondences 

no features found! 
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got 0 sift correspondences 

151 total sift correspondences 

number of matches 138 

found 138 ransac matches 

final_xform! 

[  1.02962831   0.02848925]    [ 10.18459888  -612.51569460] 

[  0.00866851   0.99544744] 

[martinj@crl13 sift_stab]$  

The “stabilize_one_frame” program works by finding an affine transform between smaller low-

resolution versions of the argument images (specifically, in the above case, it's template.pgm and 

000003-002195.pgm).  The argument images' dimensions are divided by eight. The resulting low 

resolution transform then informs the code where to look for corresponding 700x700 pixel sub 

images. The sub image correspondences may then be used to find high resolution SIFT 

correspondences.  The locations of the sub images are specific to the template in the example, 

and they are selected such that they provide good cover for distinctive high contrast portions of 

the template.  If another template is used, another set of sub image locations should be inserted 

into the code at line 66 which currently looks like: 

 //feature rich locations on the template  

  num_template_centers=11;  

  tc[0].x=753;  tc[0].y=891;  

  tc[1].x=1540;  tc[1].y=1452;  

  tc[2].x=3509;  tc[2].y=555;  

  tc[3].x=2700;  tc[3].y=2942;  

  tc[4].x=1144;  tc[4].y=3129;  

  tc[5].x=253;  tc[5].y=2717;  

  tc[6].x=3162;  tc[6].y=709;  

  tc[7].x=1650;  tc[7].y=720;  

  tc[8].x=3558;  tc[8].y=682;  

  tc[9].x=2689;  tc[9].y=176;  

  tc[10].x=1653; tc[10].y=2088; 

 

where the above code is merely defining a list of sub image locations to look for high resolution 

SIFT correspondences. 

B.2 Code “geo_ref” 

The program “geo_ref” was developed on a Linux Red Hat system with the libraries and include 

files for OpenCV installed in standard locations.  Although “geo_ref's” compilation has not been 

tested on other Linux distributions, it should compile easily as long as OpenCV is installed. 

Compiling “geo_ref” should be as simple as issuing the “make” command after moving the 

current working directory to the “geo_reference” directory.  One should see the following: 
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[martinj@crl13 geo_reference]$ make 

gcc  -I. -c xform.c 

gcc  -I. -c xform_io.c 

gcc  -DCAMERA3_2006 -I. -o geo_ref geo_ref.c xform.o xform_io.o -lm -lcv  

[martinj@crl13 geo_reference]$ 

 

The “make” command invokes the Gnu C compiler (gcc) and compiles the code into the 

“geo_ref” executable.  In this case, the “-DCAMERA3_2006” controls compilation such that the 

parameters for camera 3 from the CLIF2006 dataset are compiled into the code.  It is possible to 

modify the Makefile and substitute “-DCAMERA0_2007” or “-DCAMERA1_2007” which will 

conditionally compile “geo_ref” for camera 0 CLIF2007 or camera 1 CLIF2007 rather than 

camera 3 CLIF2006.  If the user attempts to georeference camera data for which the code is not 

currently compiled, the resulting image will be in a strange spot, potentially off the output 

screen. 

Example camera data from camera 0 CLIF2007, camera 1 CLIF2007 and camera 3 CLIF2006 

are included.  Invoking “geo_ref” to georeference camera 3 CLIF2007 should look like the 

following: 

 

[martinj@crl13 geo_reference]$ ./geo_ref ./cam3_2006_example/000003-002094.pgm 
./cam3_2006_example/000000-002094.txt  

using camera 3 2006 parameters 

image size 2672 4008 

output image size 9008 7672 at 0.200000 meters per pixel 

[martinj@crl13 geo_reference]$  

 

The two input files included as parameters to the “geo_ref” executable are a .pgm image file 

containing the raw image and a .txt position and orientation file. 

“geo_ref” will write the output file in the current working directory as “out.pgm”. In this 

particular case, the output image in Figure B1 is the georeferenced output based on the position 

and orientation of the camera. This image is 1.8 x 1.5 km and centered on the stadium. 
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Figure B1 Figure B2 

 

The input file for the image in Figure B1 is shown in Figure B2.   One can see that most of the 

input image has been cropped from the output since most of the image is a long distance away 

from the center location at the stadium. 

 

Similar output files may be obtained for the camera 0 CLIF2007 example, which is shown in 

Figures B3.  This image also represents a region 1.8 x 1.5 km centered on the stadium.  

However, the CLIF2007 image was taken with a longer focal length lens which was pointed 

more directly downward. Thus, the output image is contained in the 1.8x1.5 km region about the 

stadium. 
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Figure B3 

 

B.3 Code “descend” 

The program “descend” was developed on a Linux Red Hat system. You can also find the 

libraries and include files for OpenCV. Although its compilation has not been tested on other 

Linux distributions, it should compile easily as long as OpenCV. 

Compiling “descend” should be as simple as issuing the “make” command after moving the 

current working directory to the “descend” directory.  One should see the following: 

[martinj@crl13 descend]$ make  

gcc  -g -I. -c xform.c  

gcc  -g -I. -c xform_io.c  

gcc -g -I. -o descend descend.c xform.o xform_io.o -lm -lcv  

[martinj@crl13 descend]$  

 

“descend” may be invoked as shown below: 

[martinj@crl13 descend]$ ./descend 000003-003051.pgm 000000-003051.txt corrs_2006_3051  

“descend” is highly experimental program which is tweaked and modified by making changes to 

C code and recompiling.  The correctness of the code is shown only by the anecdotal evidence 

that the error decreases with iterations. 

The specific example included here performs the relatively simple action of finding the camera 

orientation offset. The first output file, “start.ppm”, is the alignment provided by the initial 

conditions.  In the example provided here, this image may be found in Figure B4.  The second 

output file, “end.ppm”, shows the alignment which resulted from the gradient descent.  The 

image found in “end.ppm” may be found in Figure B5. 
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The initial conditions for the alignment shown in Figure B4 are shown in the following table. 

orientation offset angle in radians  0.0  

orientation offset axis x component 1.0  

orientation offset axis y component 0.0  

orientation offset axis z component 0.0  

focal length x component in pixels 8838.48 

focal length y component in pixels 9488.43 

optical image center x component in pixels 2005.34 

optical image center y component in pixels 1299.66 

lens distortion coefficient k1 0.091610 

lens distortion coefficient k2 0.407229 

lens distortion coefficient k3 0.023974 

lens distortion coefficient p1 0.007713 

lens distortion coefficient p2 0.011477 

 

Note in the above table that there is no orientation offset.  The (wrong) assumption is that 

CLIF2007 camera 0 is aligned with the camera head. 
 

 

Figure B4 

In Figure B4, the red and green dots are far from being aligned.   However, the pattern of dots is 

similar and one could imagine alignment occurring if all the red dots were shoved about a third 

of an image width to the right.  The “descend” program will modify the initial conditions such 

that this occurs.  The table below shows the results of invoking the “descend” program as 

described above. 
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orientation offset angle in radians  -0.140906 

orientation offset axis x component 0.998671 

orientation offset axis y component 0.039754 

orientation offset axis z component 0.032792 

focal length x component in pixels 8838.48 

focal length y component in pixels 9488.43 

optical image center x component in pixels 2005.34 

optical image center y component in pixels 1299.66 

lens distortion coefficient k1 0.091610 

lens distortion coefficient k2 0.407229 

lens distortion coefficient k3 0.023974 

lens distortion coefficient p1 0.007713 

lens distortion coefficient p2 0.011477 

 

The values in the above table are identical except for the orientation offset parameters.  The 

orientation offset is about -8 degrees about the x-axis (roll) axis.   

 

The above values resulted in the alignment shown in Figure B5, which is better than the initial 

alignment shown in Figure B4.   
 

 

Figure B5 

Camera parameters other than the orientation offset did not change in the gradient descent 

because in this example the only parameters allowed to change were the orientation parameters.  

This parameter selection can be accomplished by modifying the following assignments in 

“descent.c”: 
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//gain for descent step  

#if 1  

  descent_scale.angle=-0.00001;  

  descent_scale.x=-0.0001;  descent_scale.y=-0.0001;  descent_scale.z=-0.0001;  

  descent_scale.fc_x=0; descent_scale.fc_y=0;  

  descent_scale.cc_x=0;  descent_scale.cc_y=0;  

  descent_scale.k[0]=0;  descent_scale.k[1]=0;  descent_scale.k[2]=0;  
descent_scale.k[3]=0;     

  descent_scale.k[ 4]=0; 

#endif  

Note that the only fields which are not zero are the camera orientation offset fields.  It is fairly 

common to “turn off” certain descent directions.  Often, the parameters may accomplish similar 

things, and the user probably does not want to fix an orientation misalignment by descending 

into strange lens distortion coefficients.  Thus, optimizing on only some of the coefficients is 

common. 

 

The initial conditions may be changed by modifying the following “descent.c” code: 

 
  //  cd.angle=-0.141219;  

  cd.angle=0.0; //start at zero instead of correct value above  

  // cd.x=0.998639; cd.y=0.041411; cd.z=0.031710;  

  cd.x=1.0; cd.y=0.0; cd.z=0.0; //start with x axis instead of correct value above  

 

  cd.fc_x=8838.480381; cd.fc_y= 9488.430025;  

cd.cc_x= 2005.340061;  cd.cc_y= 1299.661670;  

In order to create this example, I modified the initial conditions such that there was no camera 

orientation offset.  Thus, the one can see the original values commented out. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
 

ACRONYM DESCRIPTION 

BSP Binary Space Partitioning 

CITR Control and Intelligent Transportation Research 

CLIF Columbus Large Image Format 

DEM Digital Elevation Models 

DOG Difference Of Gaussians 

EO Electro-optical  

ERDA Extended Robust Data Alignment 

IMU Inertial Measurement Unit 

IR Infrared 

KLT Kanade-Lucas-Tomasi  

LS least squares 

RANSAC Random Sample Consensus 

RASER Revolutionary Automatic Target Recognition and Sensor 

Research 

RDA Robust Data Alignment 

SIFT Scale Invariant Feature Transform 

UAV Unmanned Aerial Vehicles 

VIVID Video Verification of Identity 
 


